

Operating an Electric Vehicle Microfactory

Mr. Pietro Perlo, Director, I-FEVS

Mr. Paolo Tebaldi, Business Development Manager EMEA, Comau

Changing needs

Electrification is the main growth driver of the market and it is re-shaping the industry with New Players, New Businesses and New Service-based Models

MARKET REQUESTS

- Safety first
- Small EVs: Four/three/two wheels
- Affordable prices and low Total Cost of Ownership
- High connectivity level with high security level
- Personalization

MANUFACTURING NEEDS

- Low investments
- Flexibility and multipurpose platforms
- Blockchain certified "Made in Turkey, Italy, Poland..."
- High convergence with renewable energies: V2H, V2G, V2X

Urban Mobility Opportunities

Vehicles

- e-Bikes are the most widespread: **+50 Millions year** with a further CAGR of 5-7% for the next 5 years
- The highest CAGR is registered for small three (India >800,000 e-rickshaws in 2017) and small four wheel vehicles (China 2.1 Million Low Speed EVs produced in 2018). Including ASIAN a 50% to 70% CAGR in the next 5 years is likely,
- **Japan** has been the first country experiencing urban concentration and that is the reason why today about 50% of vehicles in the roads are Kei-cars

Operators

- GM's \$500 million invested in Lyft and owns Cruise Automation
- BMW's ride-sharing service, ReachNow
- VW's \$300 million investment in Gett
- Tesla is going to have its own ride-sharing platform
- Toyota Motor Corp. has backed Uber for an undisclosed amount
- Daimler owns Hailo, MyTaxi, Taxibeat, and Ridescout
- Ford acquired shuttle service Chariot and then bought a majority stake in Argo.Al for \$1 billion

Mobility-as-a-Service

USERS

- MaaS dramatically lower costs compared with car ownership
- Successful peer experience will drive more widespread usage of the service
- MaaS requires no investment or lock-in.

PROVIDER

- All technology evolutions are converging toward a dramatic increase of platforms
- No experience to manufacture vehicles and usually purchase from OEMs
- Contribute to save energy and reduce emissions

OEMs

- Higher vehicles utilization impacts manufacturing
- Tend to incorporate MaaS providers
- Make low profits on small EVs and do everything possible to defend their positions.

Property of Comau - Duplication prohibited Made in Comau

Complexity of current manufacturing

Complexity of current manufacturing

• Complexity of moulds to shape metal sheets in a 3D geometry

 Complexity of tooling to assemble/weld the moulded components

• Lack of flexibility to reconfigure the structure: great difference between chassis with one and two doors

• A large scale mfg line costs >100 M€

• Large production volumes necessary for acceptable ROIs.

The Challenge

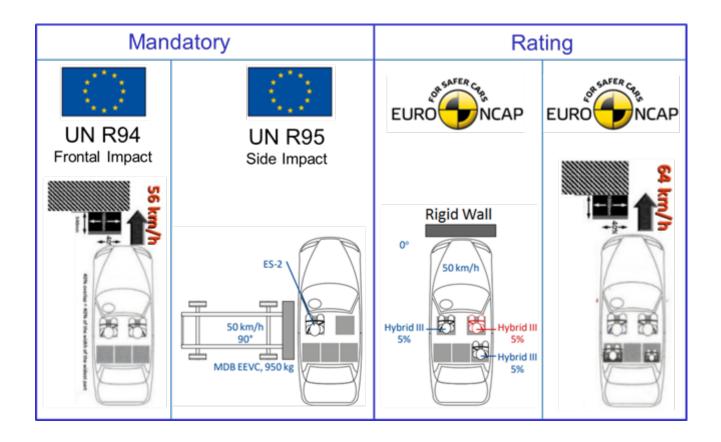
Develop a production environment capable of:

- Flexible manufacturing implementing Industry 4.0 technologies
- Low cost investment
- Automotive grade suppliers
- Best in class vehicles for safety and performance
- Best in class vehicles and plant for implemented level of security

Microfactory co-developed with Comau

The vehicle architecture

Minimal changes in the chassis to manufacture in a flexible and agile way a variety of vehicles.


Designs worldwide patented.

Crash Tests

Safety tests performed for all vehicle architectures

Código Cliente: E16-1844
Código Inferno: E16-1844

2 RESULTADOS DEL ENSAYO TEST RESULTS

Los resultados de este documento únicamente se refieren al objeto sometido a ensayo. The results shown in this document only concern the sample tested.

2.1 Resultados Biomecánicos Biomechanicais Results

Analysis start time: 0.000 s; Analysis end time: 0.160 s

NORMA DE COMPORTAMIENTO DE LA CABEZA HEAD PERFORMANCE CRITERION

	CONDUCTOR	LIMITE
HPC Head Performance Criterion	543.2	1000 (si hay contacto de cabeza)

NORMAS DE COMPORTAMIENTO DE TÓRAX THORAX PERFORMANCE CRITERION

	CONDUCTOR	LÍMITE LIMIT
Valor de compresión de costilla superior [mm] Upper Rib Defetection [mm]	2.5 mm	42.0 mm
Valor de compresión de costilla media [mm] Middle Rib Defelection [mm]	9.0 mm	42.0 mm
Valor de compresión de costilla inferior [mm] Lower Rib Defelection [mm]	12.5 mm	42.0 mm
Norma de viscosidadde costilla superior Upper Rib Soft Tissue Ceterion (VC)	Decime	1.0 m/s
Norma de viscosidadde costilla media Middle Rib Soft Tissue Criterion (VC)	0.03 m/s	1.0 m/s
Norma de viscosidadde costilla inferior Lower Rb Soft Tassue Calenco (VC)	0.06 m/s	1.0 m/s

NORMA DE COMPORTAMIENTO DE PELVIS PENIC PERFORMANCE CRITERION

20,	CONDUCTOR DRIVER	LIMITE	
Fuerza Máxima en Sinfisis Pública (PSPF) [kN] Pubis Symphysis Peak Force (PSPF) [kN]	0.87 kN	6.0 kN	

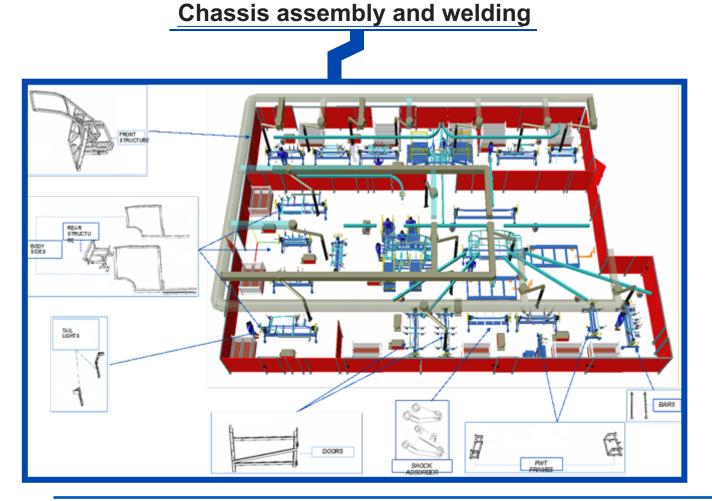
NORMA DE COMPORTAMIENTO DE ABDOMEN ABDOMINAL PERFORMANCE CRITERION

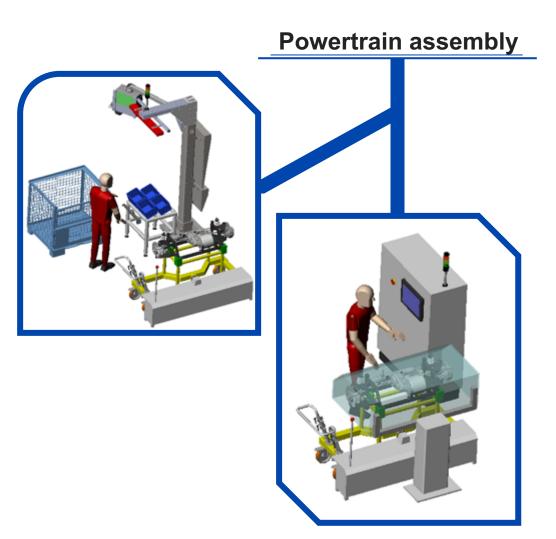
	CONDUCTOR	LÍMITE LIMIT
Fuerza Máxima Resultante en Abdomen (APF) [kN] Abdominal Peak Force (APF) [kN]	0.53 kN	2.5 kN

Flexible Production Plant for IFEVS

Scope:

- Micro-factory for multi-model portfolio
- Entire plant co-development
- Design for manufacturability
- Standard solution for easy replication




! Technologies and Innovations:

- ✓ Welding, fastening, vision systems
- ✓ In-line testing and quality gates
- ✓ Industry 4.0 architecture

- ✓ Partnering from concept product design to vehicle production launch
- Scalability: from manual to fully automatized solutions
- ✓ Station Modularity and easy re-configurability

Manufacturing lines

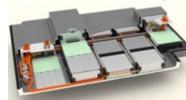
Comau Overview

A €1.5 Bn company*

2017 Turnover per area (%)

A Brand of

Control of the second state of the


Comau solutions for E-Mobility from Body to Power Systems

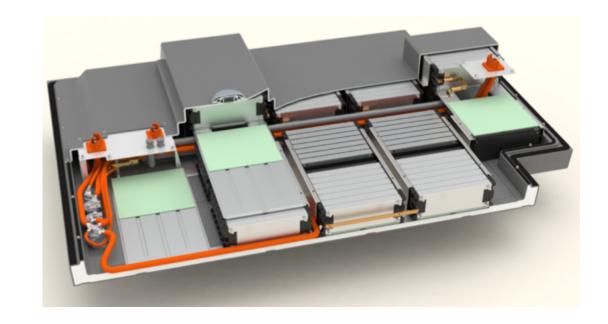
Assembly systems for Sub-Process as well as the entire e-Drive-Line

Production Systems for ICE machining and assembly

Assembly systems for **Battery Modules** and **Battery Pack**

Production Systems for manual and automatic transmissions machining and assembly

Battery Assembly


Early manufacturing process validation and prototyping for industrialization

Sector:

Automotive OEM – Luxury Sport Car Brand in Italy

Scope:

Assembly line for Module and Battery Packs for two different models

Technologies and Innovations:

- ✓ Laser Welding (Comau Lhyte)
- ✓ Thermography for welding check
- ✓ Thermal paste application
- ✓ Pouch Cell tab cutting and bending
- ✓ Bi-Adhesive film application

- ✓ Short time to market
- ✓ Support Customer in process development of a product still in evolution
- ✓ Comau internal Laser Welding Laboratory for process validation and prototype production
- ✓ Assembly line Modularity and easy reconfigurability

E-Motor Assembly

Fully Readiness for E-motor solutions process development

Sector:

Automotive OEM – Mass Market Brand in Europe

Scope:

- #1 Assembly line for Rotor (120k pcs/year)
- #1 Assembly line for Stator (120k pcs/year)

Technologies and Innovations:

- ✓ Coil winding
- ✓ Impregnation
- ✓ Balancing

- ✓ Integration capability for program involving several technology suppliers
- ✓ Program Management capability
- ✓ Time to market

Body Assembly

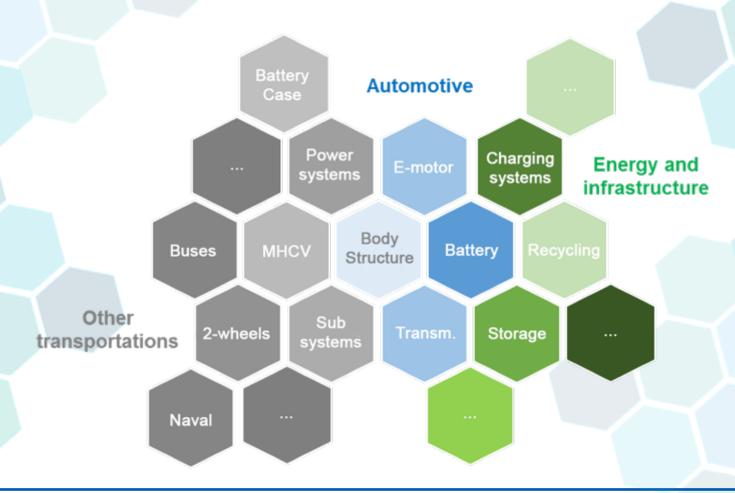
Partnered the 1st Customer anticipating the E-Mobility challenge

Sector:

Automotive OEM – Disruptive New Comer Brand for Electrical Vehicle in North America

Scope:

- #1 Complete Body Assembly Production System
- #1 Underbody Assembly Production System



- Technologies and Innovations:
- ✓ Comau Flex
- ✓ Joining technologies for several kind of materials

- ✓ Supporting short time to market vehicle launch for three different models
- ✓ Reduced footprint with high robot density for high automatization
- ✓ Standard Modular e Flexible production systyem

... Comau outlook to a larger E-Mobility Ecosystems

There is a large business ecosystem leveraging on energy and transportation merging driven by electrification

Pietro Perlo pietro.perlo@ifevs.com +39 3357199243

Paolo Tebaldi paolo.tebaldi_2@comau.com +39 3667755681